Aalto-yliopisto, Sahkotekniikan korkeakoulu
ELEC-D0301 Protopaja
2023

Final report

Project #02 (Granlund)
Network Base Station Monitor

Date: 26.07.2023

Beatriz Glaser
Mimi Maatta
Akbar Urlenbayev

Information page

Students

Akbar Urlenbayev
Beatriz Glaser
Thuy “Mimi” Maatta

Project manager
Beatriz Glaser

Sponsoring Company
Granlund Oy

Starting date
01.06.2023

Submitted date
07.09.2023

Abstract

This report outlines the development and implementation of an Internet of Things
(loT) device designed to monitor structural parameters of network base stations,
often located in remote and hard-to-reach areas. The device was developed during
Aalto University’s Protopaja course with the aim is to digitize and automate the
monitoring and analysis of various structures, products, and services. The primary
objective was to create an energy-efficient, long-lasting loT device capable of
measuring the structural conditions of the station towers and display the collected,
clean data to the user.

Utilizing wireless sensor stations, the device captures real-time data and transmits it
to a microprocessor via Bluetooth. Data is then sent to a cloud-based server via a
mobile network, where it is processed, stored, and displayed through a user
interface. This allows for real-time statistical display, anomaly detection, and
predictive maintenance alerts.

The block diagram of the system is showns below:

Sensor station Sensor station Sensor station

Accelerometer Temperature Color

;

> Gateway S

Database < > Server > Website > Users

Table of Contents

1. Introduction / JORAANTO.........ccovvssisesisesssesisssnss 5
2. ODJECEIVE [/ TAVOILE .ueeeeserseisisnsnsnsssnsssnss 5
3. HOATAWAT ..erisisisisisisssisssesssessess 6
B0 B T X) 6

B 200 0 T 010 1 00 10 4 U 4L PP 6

BT Y 1 T 0) 9
005 T 000 U0 o7 4 K0 o] = 10 () o Lo 10
3.2.2. Temperature SENSOT SEATION.. ...t sess e s s b s 11
3.2.2. Accelerometer SENSOL SEATION ...t s s s s s s bbb s 12

3.3 Hardware asSembBLinNg......ccocoouimnmnmmnsisnsissssssssssssssssssssssssss s ssssssssssssssssssssssasssssses 13
4. Data gathering and traNSfeITINgcumismsses 14
4.1 Icarus IOT BOArd.....ccisnmnminsssmsississsssssssssssssssssssssssssssssssssssss s sssssssssssssssssssssssssssssssnsassssssssnssnss 14
4.1.1 EXaMPIE Of AALA SENIL ...t seesesssssssssssssss s sess s ss s s s bR R e R e s st 14
4.1.2 HTPPS PIOTOCOL ...ttt eeessesssessss st ss s s R RS eRRReeRneaeesebnepannes 16
4.1.3 Setting up and configuration for successful build process.............nnneenseesseesneenns 16
4.1.4 Confusions with community support and Actinius SUPPOTt..........enneeecnneenseeseesssesseeens 19

4.2 Bluetooth 10W energy deVICES.....coumimmmsmsmsmsmsmssassssssssassssssssasasss 20
4.2.1 Sensor StatioN AAVEITISING. ..ot ses s sssss s sss s ss s s s b s s s anneas 20

4. 2.2 CONETAL AEVICEcooreerceeeeeeeeceeesseesseesssese s sssess s s s bR R R s SRR AR RS R R R R AR Rttt 20

5. Data processing and data diSPIAYuussssessssesssnss 22
5.1. Software architecture & server specifiCations.......c e —————— 22
L0 0 P U= T3 0) o 1, 23
LT T 00 Y L3 0 00) (o 11T, 24
5.5 Website & notifications/alerts ... 25

6. Reflection Of tHe ProjJecCt......imsisssns 27
6.1. Reaching ODJECtiVe....iciissnse s s 27
L2 1 10 T3 1) U, 28
6.3. Risk analysis / RiSKIaNalyySi.....ccummmmssses 28
6.4. Shortcomings with the data transferring process. ... ——— 29
6.5. Project SimplifiCation ... s ses 29

7. DiscuSSION ANA CONCIUSIONS......cuouvessseisss 30
7.1 Personal EXPETICIICEccumursmsmsmssssmsmssssisssssissssssssssssssassssssssss st sss s s s s sas s sessmsas s sssmsassssassasesenes 30
A 6] 1 Tl L1 T o L, 30
LiSt Of APPDCNAIXES..c..c.covesrsesnsnsnsnsnssses 31
References / LARLEEL.......veceseisesnsnsssnsnssses 32

1. Introduction / Johdanto

Network base stations are often located in remote areas which are hard to reach. The
maintenance and replacement of components of these towers tend to be expensive
and resource consuming. Our goal is to create an loT device that will monitor structural
changes to the tower and send real-time data to a server, which will display this
information to the user. Having this kind of information means that extensive analysis
can be done to predict needs for maintenance or replacements, as well as gather other
statistical data. By monitoring the towers remotely, it is possible to save costs and
other resources. Moreover, we will be able to make better predictions about tower
placement and understand the effect of external conditions (e.g., wind and cold) on
the structure.

This automation and digitization of base station maintenance procedures is part of a
bigger project called GenerloT (https://itea4.org/project/generiot.ntml), where
companies in different countries are applying the same goal of facilitating monitoring
and analysis of structures, products and services in different areas.

2. Objective / Tavoite

The main goal of this project is to create an loT device that uses sensors to gather
data from the structure of a network base station (those measurements being the
deflection of the tower, the material temperature and the tower’s signal light), and
securely sends this information to a server which processes the data and displays the
concluded information. Additionally, we aim to provide predictions on maintenance and
alert users of data anomalies. Lastly, we created an easily scalable product with the
possibility of adding more sensors and measurements.

Our target users are mobile network companies, who would use it mainly for
maintenance of base station towers. Moreover, with some modifications, this kind of
project can also be applied to other structures (such as wind turbines).

The main functionality of our device is collecting accurate data and providing remote
access to it in real time. Additionally, given its usage specifications, the device should
be power efficient and have a long-lasting lifetime. We would also like to provide a
consistent and smooth user experience.

In technical terms, our goal with this project is:

- Gather data from light function, tower temperature and deflection (using
wireless sensor stations)

- Transmit the measurements from the sensors to a microprocessor (on our
gateway) using bluetooth connection

- Use energy harvesting technology to power the sensor stations and gateway
- Have a safe enclosure for the gateway device

- Transmit data from the gateway to a cloud server using mobile network

- Receive, process and store the data using a database

- Provide a user interface for statistical display, anomaly notifications and
calculated predictions.

3. Hardware

3.1. Gateway

3.1.1. Components

The gateway gathers the data that is collected from sensors, then sends the data to
our server for further analysis. For these purposes, we use 2 different modules. The
measured data collected from the sensor is sent to the gateway using a bluetooth
module, the nRF52832 system-on-chip (SoC). Due to the advantage of the BMD-301,
which is based on the nRF52832 SoC by Nordic Semiconductor, it is used in our
gateway. The BMD-301 features an ARM® Cortex™ M4F CPU, an integrated 2.4GHz
transceiver, and is also equipped with a U.FL connector to support an external
antenna. Figure 1 shows the block diagram of the BMD-301 built on the nRF52832. In
addition, we also need a bluetooth antenna for this module. Based on the
recommended antennas for this module, we selected an antenna with max gain of 5.0
dBi and 1/2 wave type. The antenna also has an ingress protection IP65 which gives
the antenna dust and water resistance.

BMD-300 Series Modules

nRF52832 Accel Address
512kB Resolver

Flash q .
as ARM Cortex-M4F 2.4GHz Radio | | Matching
64 | | @ 64MHz Multi-protocol Network
kB RAM AES CCM Mode
Encryption
SWD Debug & Clock Real Time Random Number T
Programming Management Counter x3 Gen Pg ioheral Temperature
Giize T Antenna
Interconnect
Watchdog - / U.FL
Timer GPIO Task Low Power
Event Blocks Comparator
Core LDO
TWI SPI General
UART 128 Quadrature
Mast 2 Mast: 3 Purpose
aster X aster x Decoder Comparator
DC/DC Buck
TWI Slave SPI Slave b -bi
Regulator - @ PWM PDM NFC Tag 8-ch 12-bit
ADC
| I | I
DC-DC Bulk Decoupling GPIO x32 32 MHz
Inductor Capacitors Capacitors (Analog x8) Crystal

Figure 1: Block diagram of the BMD-301 (Src: BMD-301 data sheet)

For sending data from the gateway to the server, we use LTE-M (Long-Term Evolution
for Machines) cellular module, more specifically, the Icarus loT v2 Board is used
(which was built around nRF9160 SoC by Nordic Semiconductor). The board provides
low power consumption and is well-suited for IoT devices that need to transmit small
amounts of data over long distances. Figure 2 shows the block diagram of the Icarus
loT v2 board. Additionally, LTE antenna and GPS antenna were selected based on
the board’s recommendation with specific frequency and frequency range. Both
antennas have SMA connectors for easy access and maintenance.

Reset User
button button RGB LED Icarus loT Board

Accelerometer
(LIS2DH12)

12C

Load "
” Bias-Tee
nRF9160 SiP switch

GPS
NORDIC uFL

ccccccccccccc
USB-to-UART | _UART > : : LTE
Bridge (FTDI) uAL

SIM Data

64 Mbit SPI
NOR flash

Icarus Block Diagram

usB
connector

SIM_SELECT

SIM switch

Charge control

External Voltage
Input (vm)g Battery charger Buck DC/DC
& power path converter
LiPo battery
connector

Figure 2: Block diagram of Icarus loT board (Src: Icarus Data sheet)

3.3V
Power rail

Icarus Block Diagram

3.1.2. Circuit and PCB design

vee
c
100u UL
BMD-301-A-R
Conn_01x16_Socket vee
SW.CK 43
SWCLK
SWDI0 w0
2 13
121 po.00 P03
GND Conn_01x13 Socket 10] oot poan
Tl 15
oND b ¢ [T o Pooz P029
7 10 221 po.o3 ?0.28
»*— =X 20
8 9 22 po.os P0.27
9 8 %2 po.os P0.26
»x— X RX 22 6
10 7 P0.06 P0.25
bwund X 23
11 6 %2 po.07 P0.24
sl 58 LS 2% | po.08 P0.23
13 4 25 po.og po.22 |0
RX 14 3 %28 po.10 PO.21.
R A 3x
i 15 2 x;—: POAL £0.20
16 1 2 po12 P0.19
)&‘” PO.43 P0.18
32 { po.14 P0.17
%31 pos P016

«\» PWR_FLAG GND
nRF52 Debug

GN

TC1
T€2030-1DC
Py ey
RESET o= —f3X swck
2o T swoio

vee

S

Figure 3: Circuit diagram of the gateway

The circuit and PCB were designed based on the modules’ requirements and
guidelines. A tag connector was added to the PCB for programming and debugging
the nRF52 chip. The bluetooth and the LTE modules communicate to each other using
UART protocol, which was implemented on the schematic and PCB.

00000000000 0000D0
000000000000000D0

o]
‘O\
(o)
()
(o)
(o)
o‘
o‘
o‘
(o)
o

000000000000

Figure 4: PCB of the gateway with layer 1 (left) and layer 2 (right)

However, after seeing a potential issue with the above design, it became evident that
the initial placement of the programming tag could give rise to accessibility challenges.
Therefore, a decision was made to relocate it to a more distant location, and ensure
that there would be no issue to connect the programming tag. The new design is
shown in the image below.

ldo oo oo oo o o0

Figure 5: PCB of the gateway - redesigned

3.2 Sensors

For the goal of this project, we decided to make 3 different wireless sensor stations,
which will detect the activity of the tower signal light, material temperature, and the
movement of the cell tower. Each sensor station will be placed in a different spot on
the tower. The signal light sensor will be placed facing the signal light near the top of
the tower. The accelerometer sensor station should also be placed on top of the tower
for the greatest deflection values. Finally, the temperature sensor station does not
have such strict requirements and can be placed anywhere on the network base
station as long as it is in contact with the tower. Given the varying sensor station
positions, the bluetooth antenna’s range is important and something we had to
consider when choosing antennas.

When choosing components for sensor stations, we had the goal of making the
prototype compatible and unified, therefore the 12C protocol was chosen for the
communication between integrated circuits (ICs) or electronic components within the
system. This can provide a better flow for the development process and lead to a more
efficient and effective system.

The sensor stations use the same bluetooth module and antennas as the gateway,
together they (module and antenna) will play the role of a transmitter, sending the

measurements to the gateway. All of them are also equipped with the Ruuvi 1000 mAh
Li/MnO2 CR2477T battery, which can operate in temperature between -40°C and
85°C.

3.2.1. Color sensor station

As for the color sensor chip, the TCS3200 color sensor with the a TAOS TCS3200
RGB sensor chip (a programmable color light-to-frequency converters) and 4 white
LEDs was chosen for the the prototype on breadboard. However, later we found out
that the chip itself was old and no longer available on the market. We search for
another sensor, the TAOS TCS3470, a color light-to-digital converters with IF filter fits
our purpose, however, the same situation occurred, the sensor is no longer
manufactured. Alternatively, we found the VEML3328. The purpose of the VEML3328
sensor is to detect various types of light, including red, green, blue, clear, and infrared,
using integrated photodiodes and circuits on a single CMOS chip. Its low power
consumption and wide operating temperature range (-40 °C to +85 °C) make it ideal
for this project.

Colour sensor_VEML3328 nRF52-module Bv!.CE Battery

SW_CLK 43
Sw_oio

R1 R2
4.7k 4.7K

VEML332B
U1

TC2030-1DC

Sheet:
File: Color:Light.kicad_sch

Figure 6: Schematic of Color sensor

10

Figure 7: PCB design of Color sensor

3.2.2. Temperature sensor station

The initial plan was to use thermocouple for a better accuracy and attachment on the
mental where we want to measure the temperature. However, due to the availability
and price range of the thermocouple, we decided to just use a simple digital
temperature sensor, MCP9808 which is developed by Microchip Technology Inc. Its
primary purpose is to sense temperatures between -20°C and +100°C with an
accuracy of +0.25°C/+£0.5°C (typical/maximum). The sensor operates on a voltage
range of 2.7V-5.5V and has an operating current of 200 pA (typical).

Temperature sensor nRF52=module BLE Battery
e
vee | vee
Br2
VS grki-2e77-m
B
w2 W a0 {——
npomonT—E/ms beA b oo
4 1 eno son |1 L
] b soa
o gLEd] 3 weear mfs 00
vee %
EE S ’
— 5
GO =
< <
o oo ano

Sheet: /
File: temperature.kicad_sch

Figure 8: Schematic of Temperature sensor

11

Figure 9: PCB design of Tempurature sensor

3.2.2. Accelerometer sensor station

The ICM-20948 is a 9-axis MotionTracking device designed for low power
consumption. It features a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis
compass with a wide range up to +4900 pT. In another terms, this is a small but
powerful sensor that can detect various types of movement. It can sense the tilt and
the turn of the tower, as well as magnetic fields.

While designing the circuit for the Accelerometer sensor station, it came into
knowledge that the Digital 1/0 supply voltage (VDDIO) only ranges 1.7-1.95V, so the
voltage regulator was implemented into the schematic, which is shown in the image
below.

12

T 3 5 T

9DoF IMU_ICM—-20948 nRF52-module BLE

nRF52 Debug
B e

RESET . L swax
2 SWoi0

Level shifting and pullup

cc . c
v
‘ estsis
1w
31w
|
GND | + +1v8
H [0 b
& |-
o | | |
o " w s
&.7H] - 4.7k 6.7y N 674
s | off)s s savn | xR | s
a @

Sheet: /
o 855130 File: 9dof_sensor.kicad_sch N

Figure 10: Schematic for Accelerometer sensor

Figure 11: PCB design for Accelerometer sensor

3.3 Hardware assembling

The assembling faced challenges, first of all there was the delay of component
delivery. Then, some of the components were extremely small that was hard to place
on the pcbs. Also, due to the size and light weight of the components, they faced the
risk of flying away in the reflow oven. The image below shows the final product, on the

13

top row, left to right in order is Color sensor, Accelerometer sensor and Temperature
sensor; on the bottom row, on the left is the gateway and on the right it shows how the
back of the sensors look like with the CR2477T battery attached.

DoF IMU

Light sensor

.

U3
~

LrC
e || (@
| A

4. Data gathering and transferring

4.1 Icarus loT Board

4.1.1 Example of data sent

First version

14

granlund@granlund: ~

sending:

HTTP/1.1 200 OK
Content-Length: 6
Connection: close

received:
POST / HTTP/1.1
Host: granlund.protopaja.aalto.fi

X-Real-IP: 195.226.133.56
Connection: close
Content-Length: 57

connection
sending:

HTTP/1.1 200 OK
Content-Length: 6
Connection: close

Akbar

Figure 13: First version of data sent on Icarus board

Each BLE device has their own unique MAC address, to know which sensor data is it,
E3:B0:2B:28:17:31 was address for device that had accelerometer in it. -44 is RSSI
and the last element is the sensor data in hex format.

Second version

It was agreed that the gateway will not filter the beacons by their MAC address and
will forward every beacon it listens to. This means any bluetooth device that advertises
data will be sent to the server and the server would filter them. This deviated from the
original plan where the gateway would collect the sensor data for a certain period of
time and send many measurements at once to the server in order to minimise battery
consumption.

Below is the an example of data sent:

granlund@granlund: ~ X + v
000070834 73:CC:31:66:5A:4B 1E-FF-06-00-01-09-20-02-6F-5D-20-AD-AA-51-28-04-93-FB-07-ED-C5-E0-29-F1-66-5B-FE-3B-94-3C-E3
000070916 U46:CO:T7A:2A:AD:AF 1E-FF-4C-00-07

received:

-19-01-0E-20-0B-99-8F-

000086442 E4:15:F6:61:D3:A6 02-01-06-11-07-53-44-52-41-57-54-L49-42-00-40-00-00-00-69-00-00-09-FF—
connection

sending:

HTTP/1.1 200 OK

Content-Length: 6

Connection: close

received:

POST / HTTP/1.1

Host: granlund.protopaja.aalto.fi
X-Real-IP: 195.226.133.57
Connection: close

Content-Length: 1023

18769532379882 a6d361f615e4 02010611075344524157544942004000000069000009FF000deld15f661d3a6
2403320 65d361f615ed4 02010611075344524157544942004000000069000009ff000ded15f661d365
2460937 626e000ad774 020112020a080bffUc001006621e8cael0dl

2485351 3621b06bb767 020112020a0c0afficO010050018a97c85

2500976 f8d361f615e4 ©62010611075344524157544942004000000069000009fFf000ded15f661d38
2570312 64fbd865647e 02011a2020a070affUc0010052e186¥7298

2579101 0ae93d7928d3 leffUc00121990c5d71ea865429af027f8d35dU1f0103b2cce®03bU58400db
2606445 5a7ac7cld5c6f 020112020a080cffuUcO0100762138bcU8d768

2689453 a6d361f615ed4 02010611075344524157544942004000000069000009ff000ded15f661d3a6
2779296 387561f615ed4 02010611075344524157544942004000000069000009ff000ded15f6617538
4386718 626e000ad774 02011a020a080bffUc001006621e8caelddl

4477539 a6d361f615e4 ©62010611075344524157544942004000000069000009fFf000ded15f661d3a6
4u85351 387561f615e

received:
4 020106110753445241578104492 65d361f615e4 02010611075344524157544942004000000069000009fF000ded15f661d36510052e1867298

Figure 14: Second version of data sent on Icarus board

15

The structure of the message is following:

“Timestamp in microseconds” “ MAC address” “Advertising payload data in HEX
format (where the sensor data is stored)”

4.1.2 HTPPs protocol

For data transfer from Icarus to the web server we used HTTPs requests, we used
POST requests with a payload as UART message. For this purpose we used NRF
Connect SDK v2.2.0 https_client sample and also echo _bot sample for UART
readings. This is inside Icarus, below is the sample of making http post request with
temperature data with its address. There is also a response from the server 200
meaning the server has successfully received it. Picture below shows Icarus’s serial
monitor operating the post requests:

R cnectnyg A TERMINAL ABOUT ey

SERIAL PORT

-63 03-FF-09-6A

Connecting to granlund.protopaja.aalto.fi
Sent 143 bytes
Received 122 bytes

> HTTP/1.1 200 OK

Finished, closing socket.
Echo:

CLEAR CONSOLE

sHow sioe PANEL @)

Figure 15: Icarus’s serial monitor operating the post requests

4.1.3 Setting up and configuration for successful build process

In order to be able to flash the code to the Icarus board with only the USB-connector,
the CONFIG_BOOTLOADER_MCUBOOQOT=Y should be added in the prj.conf file as
shown below:

16

CONFIG_NRF_MODEM_LIB=y

CONFIG_NETWORKING=y
CONFIG_NET_SOCKETS=y
CONFIG_NET_SOCKETS_POSIX NAMES=y
CONFIG_NET_NATIVE=n

#UART
CONFIG_SERIAL=y
CONFIG_UART_INTERRUPT_DRIVEN=y

CONFIG_HEAP_MEM POOL_SIZE=1024
CONFIG_MAIN_STACK_SIZE=2048

CONFIG_MODEM_KEY_MGMT=y
CONFIG_LTE_LINK_CONTROL=y
CONFIG_LTE_AUTO_INIT_AND_CONNECT=n

CONFIG_NEWLIB_LIBC=y
(ONFIGiBOOTLOADERiMCUBOOT:A

Figure 16: configuration to flash the Icarus board

This configuration addition enables the building process of the Icarus IoT board to
create a binary file "app_update.bin” which is needed for flashing commands. If this
config addition is not added, then the building process will generate only merged.hex
or zephyr.hex files that are not flashable through the USB-connector.

After building process in VScode, mcumgr utility is downloaded via Go language:

go version < 1.18 go version >= 1.18

go get github.com/apache/mynewt-mcumgr-cli/mcumgr

mcumgr utility is used to flash the built binary file from building process as follows:

mecumgr image upload app_update.bin --conntype=serial --
connstring="dev=COM14,baud=115200"

Before entering this command the Icarus loT board should be in a bootloader mode.
Bootloader mode is entered by this sequence:

1. Hold reset button

2. While holding the reset button, press and release the user button.

3. Release the reset button
Now the icarus IoT board is in bootloader mode, meaning that it is ready to update its
code.

The above mentioned command is entered in the terminal inside <path-to-sample-
dir>/build/zephyr/ directory. Below is shown the successful build that generated the
needed binary file and also how to flash the code.

17

[¢5] Administrator: C:\Windows\system32\cmd.exe

171/171] Linking C static library secure_fw\libtfm_s_veneers.a
72/243] Performing install step for 'tfm’

- Install configuration: "MinSizeRel™

224/243] Linking C executable zephyr\zephyr_pree.elf

228/243] Linking C executable zephyr\zephyr_prel.elf

234/243] Linking C executable zephyr\zephyr.elf
lemory region Used Size Region Size %age Used
FLASH: 28300 B 441856 B 6.40%
RAM: 6960 B 211736 B
IDT_LIST 9 GB 2 KB
238/243] Generating ../../zephyr/app_update.
bign the payload
239/243] Generating ../../zephyr/app_signed.
bign the payload
241/243] Generating ../../zephyr/app_test_update.hex
bign the payload
243/243] Generating zephyr/merged.hex

:\nordicAPPS\echo_bot>cd build_actinius_icarus_ns
:\nordicAPPS\echo_bot\build_actinius_icarus_ns>cd zephyr
:\nordicAPPS\echo_bot\build_actinius_icarus_ns\zephyr>mcumgr image upload app_update.bin --conntype=serial --connstring

"dev=COM14,baud=115200"
76.28 KiB / 76.28 KiB [= =] 100.00% 2.25 KiB/s 33s

:\nordicAPPS\echo_bot\build_actinius_icarus_ns\zephyr>_

Figure 17: the successful build that generated the needed binary file and also how to
flash the code

NRF connect sdk 2.2.0 was used to program the Actinius board. As advised with
Actinius support, in the downloaded nrf sdk inside “C:\ncs\v2.2.0\zephyr\boards\arm”
directory where the board files are located, the existing board files from SDK for
actinius icarus was replaced with board files downloaded from icarus’s website.

QCTINnIUS I

i it " Icarus loT Board Board il

Icarus loT Board

Board files

Datasheet

Finding IMEl and CCID The board definitions of the Icarus loT Board are included in the GitHub rep
05 and can be found under boards/arn/actinius_icarus/.

Board files

Jcarus SoM (nRF9160) To use the latest features in the nRF Connect SDK v1.5.x - 2.2x and Zephyr OS, you should
use the latest Icarus board files which can be downloaded with the links below.

Icarus SoM DK (nRF9160)

Icarus Bee (nRF9160) nRF Connect SDK Version ~ Board Files Update Pack (BFUP)

Environmental Sensor

FeatherWing v2 BFUP-v1.2.1-nrf-1.5.x

RS232/RS485 FeatherWing SrUP12 T
BFUP-v1.2.1-nrf-1.6.x
BFUP-v1.2.1-nrf-1.7x
BFUP-v1.2.1-nrf-1.8
BFUP-v1.2.1-nrf-1.9x
BFUP-v1.2.1-ni
BFUP-v1.2.1-nrf-2.1x

22x Bl 2.1-nrf-2.2.x

Please extract the archive into the zephyr/boards/ directory of your SDK version. This is

usually ~/ncs/<sdk-version>/zephyr/boards/

Last updated on Jul 31, 2023

Modem firmware was updated to 1.3.5 using UART as instructed below:

18

Updating the modem firmware

There are two ways to update the modem firmware: (a) using UART and SMP firmware, or (b) using a J-

Link programmer.

Modem firmware update using UART
Prerequisites

e An account on Actinius I/O to use the Actinius I/O Serial Programmer
e Python

e pynrfjprog (pip install pynrfjprog)
Flashing the modem firmware using UART

1. Download the desired modem firmware version from Nordic's nRF9160 download page

2. Open the Serial Programmer on Actinius 1/O, connect your device and select the board type at the
top right corner of the page

3. Select the "Modem Firmware Update over UART" firmware corresponding to your board from the
list

4. Click on Write

5. Once the "Modem Firmware Update over UART" firmware is uploaded, reset the board and use

update_modem.py to upload the modem firmware:

python update _modem.py <modem firmware file> <port of board> 1000000

Figure 18 Instruction for updating Modem firmware to 1.3.5 using UART

4.1.4 Confusions with community support and Actinius support

In the very beginning flashing the code was not possible with MCUBOOQOT, building
process failure. we reconfigured Kconfig.deconfig file to add the TFM support and also
made pristine build. The icarus became programmable. Later actinius support advised
us that the SDK’s board files for actinius board needed to be replaced with board files
provided by actinius's website.

NCS 2.4.0, 2.3.0 did not work for icarus loT board. One of the possible reasons is that
its modem firmware was updated late, after we chose 2.2.0.

Actinius support provided us a device tree overlay file and prj.conf file in order to
configure UART, but it was not needed.

Apparently it was a problem of zephyr's device binding, instead of DT_CHOSEN we
used DT_NODELABEL in the main code.

http sample provided by ncs 2.2.0 for some reason we don’t know yet is not buildable
due to KCONFIG issues. Actinius support responded to this issue by suggesting using
another sample. Below is the error message when building the http sample:

19

P htp_client
TERMINAL

v HTTP_CLIENT

g task: nRF Connect: Generate config actinius_icarus_ns for c:\http_client

uild --build-dir c:/http_client/build c:/http_client --pristine --board actini us_ns -- -DNCS_TOOLCHAIN
ATIONS=y -DCONFIG_DEBUG_THREAD_INFO=y"

> NRF CONNECT: WELCOME

NRF CONNECT: APPLICATIONS
http_client
&2 build Actinius Icarus ... &

> NRF CONNECT: CONNECTED DEVICES
> OUTLINE

> TIMELINE

 NRF CONNECT: HTTP_CLIENT

> NRF CONNECT: ACTINIUS ICARUS NS

v NRF CONNECT: ACTIONS

@ http_client: build & Q

Figure 19: Error message when building the http sample

NCS’s https_client sample is buildable, and this was chosen for the project.

From NRF devzone, Peripheral UART and central_UART were suggested samples
to use for BLE part, they are not suitable for our project as it is a pair connection type
of BLE and it allows only 2 devices to transfer data. In our case we have 4 BLE devices,
one of which is the central that listens to the broadcasters. So we used Adafruit’'s BLE
beacons which broadcast data independently without connection to another device,
and Adafruit’'s BLE central that listens to the advertising packets.

4.2 Bluetooth low energy devices

4.2.1 Sensor station advertising

BLE advertising is written in Arduino that reads data from a sensor, and broadcasts it
as a bluetooth beacon. The code uses the Adafruit Bluefruit Library for BLE
functionality.

4.2.2 Central device

BLE beacons scanning is written in Arduino with the help of Adafruit’s Bluefruit library.
First version

20

The gateway’s nrf52 scans and filters the devices by their MAC address, the provided
picture shows the scanned sensor station: E3 address is the accelerometer data and

the F6 is the temp sensor data.

/] Target MAC addresses in little-endian format
const uint8_t tar‘get_mac[NUM_TARGET_DEVICES][6] ={
{oxe3, OxF5, @x9F, ex3E, OxA4, BxF6}, // Address for F6:4:
Sova1 Ov17 Owd0 ﬂyjﬂ,,,ﬁ\(ﬂ.ﬂ,__ﬁv,ﬂj, '
o\ Monitor %

fsage (Enter to send message to *Adafruit Feather nRF52832' on 'COMS5')

13:26.862 -> 000113273 F6:A4:3E:9F:F5:03 -36 03-FF-09-60

:13:26.882 >

p:13:26.52a8 -> Timestamp Addr Rssi Data

8:13:26.524 -> 000113373 F6:A4:3E:9F:F5:03 —35 03-FF-09-60
26.5324 ->

Rssi Data
:3E:9F:F5:03 -39 03-FF-09-60

Rssi Data
:3E:9F:F5:03 —36 03-FF-09-60
¥3a —>
:26.892 —> Timestamp Addr Rssi Data
08:13:26.832 —> 000113688 F6:A4:3E:9F:F5:03 —35 03-FF-09-60
08:13:26.892 —>
26.951 —> Timestamp Addr Rssi Data
26.951 —> 000113793 F6:A4:3E:9F:F5:03 -39 03-FF-09-60

Rssi Data
:2B:28:17:31 -26 07-FF-03-5B-01-2E-00-70
7.082 —>
27.088 -> Timestamp Addr Rssi Data
27.088 —> 000113896 F6:A4:3E:9F:F5:03 -36 03-FF-09-60

-180 -> Timestamp Addr Rssi Data
180 -> 000114001 F6:A4:3E:9F:F5:03 -35 03-FF-09-60
180 ->
275 -> Timestamp Addr Rssi Data
7.275 -> 000114092 F6:A4:3E19FiFS5:03 -39 03-FF-09-60
27.275 ~->
27.338 -> Timestamp Addr Rasi Data .
»338 -> 000114157 E3:B0:2B120:17431 ~26 07-FF-03-5A-01-21-00-63
.338 ->

Figure 20: The scanned sensor station

It forwards the scanned data to UART which then Icarus loT board makes a HTTP
post request with the given UART buffer.

Second version

Gateway’s nRf52 is listening to every beacon that it can scan within the range.

Figure 21: Listening to beacons in the gateway

21

5. Data processing and data display

5.1. Software architecture & server specifications

The following figure shows a block diagram of the overall software architecture used
on the server and data processing side of this project. The light blue boxes describe
the four main parts of the structure (cloud server, database, website and data
processing scripts). The project itself is currently hosted on Aalto’s cloud unix server,
granlund@granlund.protopaja.aalto.fi. The web application can be found through the
domain: https://granlund.protopaja.aalto.fi/, which has been set as a secure website.

= 1 - signup page confirms user from

users © : data
S 2 - profile page alters user data

3 - ML feeds estimations page,

3.7 home
create - pags
alerts AL | deflection %=
l AN
profile e -
= ‘ light
s L ‘ ’7 _
—— alerts - i

Figure 22: Block diagram of overall software architecture

Ideally, the website is set to provide a smooth and informative user experience. Due
to time constraints, our focus is going to be specifically on gathered data display,
notification alerts regarding data points, and display of predictions based on the
measurements gathered by our device. Other additional features such as user

authentication, profile and customizations will be left on the back burner for possible
future iterations.

The data flow on the server follows the following steps:

1. HTTP requests is actively listening for data points (which will be received
every five minutes);

22

2. Data, received as a JSON file, is transferred to our database with the
help of a python script;

3. Backend scripts analyse new data for anomalies and activate
notifications as required;

4. Data is then updated on the website graphs;

5. Prediction calculations are rerun and also updated on the website.

The website is run on a flask app, which is started by running a python script on the
server. This can be done from specific computers with ssh key access to the server.
This app can be running continuously so that the website is always online. The main
language when coding flask apps is python, but for the website html, cs and javascript
are also used.

5.2 Data storing

The data is stored on a Postgres hosted database. This has been installed on the
project server. The project currently consists of a single database, protodata, with two
tables (measurements and alerts). The following table shows the columns and data
types used for the measurements table, which is used for storing all data points
received:

Column name: Data type:

m_id Integral (primary key)
date String

timestamp String

address (of sensor station) String

measurement Float

Table 1: Column name and data types of all data points received

The alerts table has reference to the measurements table’s primary key values. This
table stores the alert messages created for any data anomalies found amongst the
measurements. The columns and data types are as follows:

Column name: Data type:

a_id Integral (primary key)
alert String

type String

23

measurement Integral, reference to Measurement’s
m_id

Table 2: Data names and types for the alert messages

The server is constantly listening for HTTP requests from the gateway. Our original
plan and agreement was that the data would be sent from gateway to serverin a JSON
file format. However, due to time constraints, that was not achieved. The data is
received from the gateway as plain text strings. A quick solution to this problem was
to create a script on the server that would convert such strings into JSON files, which
allows the received data to be uploaded into the flask app and displayed to the user.
From the JSON file, the running python script then correctly allocates the data into our
database. Every time data is received, a new JSON file is created with data points
(measurements) gathered from our sensors by the gateway. The JSON template can
be found on the appendix of this report.

5.3 Code structure

The server code is organised on the following structure:

emm—— project

- database

m—— \yebsite

- static
- templates

Figure 23: Organised structure of server code

The main directory, project, contains all the necessary files involved in data storage
and the web application. In it, the database and website directories are found, as well
as the main.py file responsible for running the application.

The database directory contains all the scripts related to creating the database and
the tables. Whereas, the website directory handles the data display and our api. In it,
you can find python scripts responsible for: the setup and handling of the website
pages (views), the data processing and storage on database, as well as a script
handling graph and table formatting. Additionally, the two folders inside the website
directory, static and website, store graph pictures for display and html templates
rendered from the views script, respectively.

24

For the website’s css and javascript formatting, both custom code and Bootstrap
library were used. All code can be found on our public github repository.

5.5 Website & notifications/alerts

The images below demonstrate the first and final iterations of the website’s home
page, respectively. The home page of the website displays information about the last
known measured values, which is updated every time a new measurement is
processed. Originally, the goal was to display the latest measurement made by each
sensor station. However, due to last minute changes on the data transfer (from
gateway to server) format, the newer website page displays the latest recorded value.
The home page also displays graphs for each sensor station (present on the database)
showing its past measurements and some statistics.

¢« C & granlund.protopaja.aalto.fi < % ®» 0O :

M Gmail @ @ mycourses @ sisu A? into aalto aalto courses 2% aalto wiki A+ o Zulip @ Tenttiarkisto »

Last measurement made by your device

Time: Temperature: Light Status: Deflection Value:
. _oC

<« C @& granlund.protopaja.aalto.fi < % » 0O

M Gmail @ @ mycourses @ sisu A? into aalto aalto courses & aalto wiki A+ o Zulip @ Tenttiarkisto »

Home Alerts Predictions

Last measurement made by your device

Date: 719/2023
Timestamp: 03:40
Sensor addr3
address:

Measured 54.0

value:

25

GRAPH AND STATS - sensor station: addr2
M d vall frol ddr2
Statistic Value
. 0 count 1.0
1 mean 301.0
2 max 301.0
3 min 301.0
GRAPH AND STATS - sensor station: addrl
Measured values from addrl
Statistic Value
0 count 2.0
/ 1 mean 16666.5
/ 2 max 33333.0

Figure 24: The first and final iterations of the website’s home page, respectively

The graphs and statistics display works so that every single measurement made by a
specific MAC address is collected and plotted on a graph over the time they were
measured. The website will display as many graphs as there are different addresses
registered on the database, i.e. sensor stations collecting different measurements.

In addition to the data display, our project aims to keep the user informed about
measured anomalies. Our website will display such anomalies as notifications to the
user. Therefore, the website also has an “alerts” page, shown in the image below,
which shows users of any unexpected measurement made on that day or previous
dates.

26

& C @ granlund.protopaja.aalto.fi/alerts < % » 0O ‘1;

M Gmail @ @ mycourses @ sisu A? into aalto aalto courses $% aalto wiki A+ Z zulip @ Tenttiarkisto

Home Alerts Predictions

Here you can see the latest alerts!

Light
> today's (7/9/2023) alerts
> previous alerts

Temperature

> today's (7/9/2023) alerts
> previous alerts

Deflection
> tadav's (7/9/2022) alerts

Figure 25: Alerts page from the website

The user will be alerted given the following scenarios:
1. the tower light is too dim at night time,
2. the temperature of the tower has reached an extreme value,
3. the measured deflection is constant,
4. the measured deflection is too extreme,

Lastly, our website has a third separate page reserved for displaying maintenance
predictions based on the gathered data. However, due to insufficient gathered data,
limited knowledge and understanding of the physics involved and our data being
limited to only a few sensor stations, we were not able to create accurate and
significant predictive algorithms. Currently, it contains placeholder text and some
overview comments on the tower structure.

6. Reflection of the Project
6.1. Reaching objective

Our simplified goal with this project was to create a health monitoring system including
individual sensor stations, a gateway and a data display application. This basic target
was achieved and we finalised a working prototype. In technical terms, we had a few
shortcomings that are further described in the following sessions. Most of our
adjustments were made due to our limited skills and the overall time taken to complete
each phase.

27

6.2. Timetable

Our timeline and schedule significantly deviated from our original plan, mostly due to
external working responsibilities of multiple team members, as well as project tasks
taking more hours than expected. Regardless of the schedule, most main features
were completed, especially from the hardware and server sides of the project.

We found it quite hard to keep up with our planned milestones given our own working
hours and different ways of completing tasks.

6.3. Risk analysis / Riskianalyysi

In the project plan, risks were identified as follow:

Risk Management

time management and scheduling create a detailed task and timeline plan
shipping delays of components order the crucial components in advance
unavailability of needed components research alternatives

lack of knowledge -> additional time | overestimate time for tasks rather than
consumption underestimate

safety and dangerous situations when | properly learn safety procedures ahead of time,
prototyping with hardware and physical tools take caution and wear appropriate gear/clothing

Personal safety measurements and risks at test | know and follow all safety procedures
site locations

problems when testing device

Hardware safety during tests analyze material risks and potential hardware

A lot of problems encountered throughout the project, as well as the factors
contributing to the delays were documented in the project plan.

The availability of components problems were evaluated as a potential risk. To
illustrate, an incorrect order for antenna cable adapters was placed, which led to a
delay in connection testing. Furthermore, the final order with all the necessary
components for assembling the PCB was facing shipping delay, which caused a big
delay on the assembling the devices.

The plan had mentioned few points about safety and dangerous situation as risks.
However, none of those situations had occurred. All safety procedure was applied
while working accordingly.

It is worth mentioning that, even though the risks were well assessed, we left out the
considerations related to communication challenges, unforeseen natural events like
illnesses, and issues pertaining to time management. These factors should also be
recognized as potential risks.

28

6.4. Shortcomings with the data transferring process

Whilst there is a working code that sends data from the sensor stations, to the gateway
and to the server, this code was tested with the components using a breadboard and
not uploaded to the PCB. In future iterations, this would be the first step to improving
the prototype. Furthermore, we had originally planned that the gateway would gather
measurements until a byte is full and only then send the data collectively to the server
in order to have lower power consumption. However, this is currently not happening
as the gateway sends the measurements to the server as soon as they are received
from the sensor stations.

6.5. Project simplification

Due to time and skills constraints, we also had to simplify or give up on some of our
original additional features. From the data analysis and future predictions point of view,
we found it hard to create predicting algorithms that would give up significant values
or results. When creating future predictions, we would have needed an extensive
dataset created by our device in order to get a better understanding of what the
measurements would look like and what conclusions could be taken from them.
Furthermore, the implemented sensor stations do not provide enough data to give
conclusive predictions about malfunctions and maintenance timeframes. For example,
there are multiple factors influencing the deflection of the tower, and data from multiple
sensors (temperature, tower movement, material weight, wind pressure) could be
combined for a possible prediction of future deflection values. Our current knowledge
level of tower physics is not enough in order to create such a predictive algorithm.

The other unfortunate feature we had to forgo was utilising energy harvesting
techniques. We did not have enough time to implement this feature after creating the
basic prototype. Given our research on the topic and planning, we would have liked to
experiment with solar panels as an energy harvesting technique to at least prolong the
battery life of our gateway and sensor stations. This improvement could be a future
direction of this prototype.

29

7. Discussion and Conclusions
7.1 Personal experience

Beatriz Glaser:

| am satisfied with my work on this project. | have been looking for a chance to further
my software skills, and being responsible for the server-side processes (data
processing & display) did exactly that. | had never created a flask app before, worked
with protocol requests nor ever accessed a remote server before. This experience
taught me a lot, both hard and soft skills, that are necessary in the development of
projects. It was especially valuable to work on a project given by a company, looking
for solutions to a real current problem.

Mimi Méaétta:

Overall, the course has provided me with a deeply educational experience. My main
focus on the project was Hardware. Although | had had a couple of prototyping courses
as a part of my major, | had only touched the surface of circuit design. Furthermore,
my knowledge of different sensors and components was limited, and at the same time,
creating and assembling PCBs was completely new to me. Throughout this course, |
got to work more with Kicad software, and learnt to design efficient PCBs. | saw myself
improve tremendously in this area.

7.2 Conclusion

There was a lot to learn from this project from the perspective of all team members.
Creating it from scratch (brainstorming, conceptualising, planning and developing) was
a hard challenge to overcome, however we succeeded at the end delivering a working
prototype.

30

List of Appendixes

Appendix 1: Project plan (PDF)

Appendix 2: Datasheet for Icarus loT Board V2,
https://docs.actinius.com/icarus/datasheet

Appendix 3: Datasheet for BMD-301, https://content.u-
blox.com/sites/default/files/BMD-301_DataSheet UBX-19033351.pdf

Appendix 4: Datasheet for VEML3328,
https://www.vishay.com/docs/84968/vemI|3328.pdf

Appendix 5: Datasheet for MCP9808,
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP9808-0.5C-Maximum-
Accuracy-Digital-Temperature-Sensor-Data-Sheet-DS20005095B. pdf

Appendix 6: Datasheet for ICM20948, https://invensense.tdk.com/wp-
content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf?ref_disty=digikey

31

References / Lahteet

[1] Actinus, Icarus loT Board V2,
https://docs.actinius.com/icarus/introduction/

[2] Adafruit, Bluefruit nRF52 Feather Learning Guide,
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/arduino-bsp-setup

[3] Nordic Semiconductor, Devzone, https://devzone.nordicsemi.com/
[4] PostgreSQL, https://www.postgresql.org/

[5] Psycopg, Psycopg — PostgreSQL database adapter for Python,
https://www.psycopg.org/docs/

[6] U-Blox, BMD-301 data sheet, https://content.u-blox.com/sites/default/files/BMD-
301_DataSheet_UBX-19033351.pdf

[7] Zephyr, https://docs.zephyrproject.org/apidoc/latest/index.html

32

