
Page 1 of 15

ELEC-D0301 Protopaja

2021

Project report

Project #01

Method for automatized positioning for
luminaires.

Date: 31.8.2021

Team members

Igor Oinonen

Alexander Popov

Page 2 of 15

Information page
Students

Igor Oinonen

Alexander Popov

Project manager

Igor Oinonen

Sponsoring Company

Ensto Building Systems Oy

Starting date

31.5.2021

Submitted date

31.8.2021

Page 3 of 15

Tiivistelmä

Tässä projektissa keskitytään prototyypin kehittämiseen langatonta lamppukartoitustyökalua

varten, joka mittaa RSSI:n avulla muiden lamppujen signaalien voimakkuutta ja käyttää kerättyjä

tietoja koordinaattijoukon muodostamiseen lamppujen ryhmälle. Tämän lähestymistavan

testaamiseksi käytämme RuuviTag-älymoduulin BLE-antureita, koska niissä on avoimen

lähdekoodin laiteohjelmisto, jota voidaan muokata tarpeidemme mukaan. Mukautettu

laiteohjelmisto on kirjoitettu C:llä ja ladattu RuuviTagiin langattomasti tai nRF52 devkitin kautta.

Mukautetun laiteohjelmiston avulla RuuviTagit voivat mitata signaalin voimakkuutta muiden

ryhmän tagien välillä. Isäntäkone voi sitten muodostaa yhteyden tagien ja kerätä signaalin

voimakkuustietoja. Tietoja käytetään sitten XY-tason tagien suhteellisten koordinaattien

laskemiseen. Lisäämällä parin RuuviTagin tunnetut koordinaatit voimme saada koordinaatit koko

ryhmälle. Lopputuotteessa ainoa manuaalinen tehtävä on verrata näitä koordinaatteja

pohjapiirroksessa oleviin koordinaatteihin epätarkkuuksien tarkentamiseen, mikä vähentää

työtaakkaa merkittävästi.

Page 4 of 15

Abstract

This project focuses on creating a prototype for a wireless lamp mapping tool that would use

RSSI to measure signal strength to other lamps and use collected data to produce a set of

coordinates for a group of lamps. To test this approach, we are using RuuviTag smart module’s

BLE sensors, as they have open-source firmware that could be edited for our needs. The custom

firmware is written on C and is uploaded to RuuviTag over the air or via nRF52 devkit. With the

custom firmware RuuviTags can measure signal strength between themselves and other tags in a

group. The host pc can then connect to the tags and collect the signal strength data. The data is then

used to calculate the relative coordinates of tags in XY plane. By adding actual coordinates of a

couple of tags we can then obtain the coordinates for the whole group. In a final product the only

manual task is comparing those coordinates to those available in a floorplan to adjust for

inaccuracies, reducing the workload by a large margin.

Page 5 of 15

Table of Contents
Tiivistelmä ... 3
Abstract .. 4
Table of Contents ... 5

1. Introduction .. 6
2. Objective .. 7
3. Hardware used ... 8
4. Programming RuuviTags ... 9

4.1. Setting up development environment .. 9

4.2. Setting up development board ... 9
4.3. Signal level measurements .. 10
4.4. Possible improvements and known bugs... 10

5. Data acquisition ... 11
5.1. Converting signal level data into meter distance data ... 11

6. Constructing node space .. 12
7. User interface for fine tuning (not implemented) .. 13
8. Reflection on the project .. 14

8.1. Overall project success .. 14
8.2. Improvements .. 14
8.3. Timetables ... 14
8.4. Risk analysis .. 14

9. Discussion and Conclusions .. 15
List of Appendixes ... 15

References .. 15

Page 6 of 15

1. Introduction

Smart lighting solutions solve many important problems of the modern world. Not only they

could provide better working condition for employees, but also increase energy efficiency. One of

the problems, however, that comes with smart lighting is increased setup complexity. Each

individual light source needs to be configured to know its approximate location in the room and be

able to communicate with other light sources. Such configuration may take up to several hours for a

worker to manually test each individual lamp and register its corresponding location in a lamp

mapping software. Currently there are no readily available off-the-shelf automated method to

accomplish this task, so a novel approach is required to speed up the process. The goal of our

project is to pick a possible solution, evaluate its viability for such a task and develop a working

proof of concept prototype.

Page 7 of 15

2. Objective

The first part of the project is choosing main approach. One of the important factors in

approach selection was keeping everything as simple as possible without requiring additional

components or external hardware, thus relying solely on the Bluetooth module provided with the

smart lamps. We also considered trying out other options but decided that our main approach is

sufficient.

 Our main approach is based on Received Signal Strength (RSSI) localization. Light sources are

substituted by programmable Bluetooth enabled smart modules, these modules broadcast signals

with known power and received signal is measured on each module, from this data approximate

distance can be derived. Then this network of distances will be analyzed to construct human

friendly graphical 2D representation of module locations.

Page 8 of 15

3. Hardware used
• 10 RuuviTag wireless sensors

• RuuviTag Development Kit

• Bluetooth 4 enabled laptop (not as part of the project)

Figure 1 Hardware

Page 9 of 15

4. Programming RuuviTags
The first step of the project is collection and aggregation of signal level data. By default,

RuuviTags do not provide such data, so their firmware has to be customized to collect and store

signal level data about every other device in its vicinity.

4.1. Setting up development environment
Firmware building and development toolset consisted of SEGGER Embedded Studio for

development on devkit and several GNU build tools for packaging release packages. Overall

setup was done according to official RuuviTag documentation, but it is important to note that

the instructions did not work entirely in our case. In the step “Setting up the project” one should

use firmware from our repository and the branch “ensto_proto”. Additionally, for building

release packages on Windows additional steps must be performed if needed.

4.2. Setting up development board
One of the tags was removed from its case and placed on the RuuviTag shield included with

the dev board. Dev board is connected to the development computer via USB interface,

allowing direct development and debugging on the board via SEGGER Embedded Studio.

Please note that the tag must be ziptied or otherwise fixed to the devboard to allow for reliable

connection.

Figure 2 Improvised development board

https://www.segger.com/products/development-tools/embedded-studio/
https://lab.ruuvi.com/ses/
https://github.com/dexter3k/ruuvi.firmware.c/

Page 10 of 15

4.3. Signal level measurements
By default, RuuviTags broadcast temperature, pressure and other information on the interval

of couple of seconds. We scan for any advertisement packets in the “my_on_scan_isr”

procedure which is defnined in main.c. Broadcasts that are not coming from other tags are

filtered out and received signal strength level is stored in memory using “update_tag_info”

procedure (also defined in main.c). If the signal level received was already measured before,

new value is updated using a moving average (memory factor can be configured in

app_ensto.h).

4.4. Possible improvements and known bugs

• Currently fixed amount of space is allocated in memory for storage of signal level

information. If there are more tags than that, one should probably implement some priority

algorithm to choose which tags are excluded from the storage.

• Broadcast listening code stops after random period of time, for this reason we must re-

enable it every time host computer is connected via GATT service. This is implemented in

handle_gatt_conncted method in app_comms.c.

• Instead of moving average one should probably just store best signal level reached, but this

has proven to cause random inaccurate results, reasons unknown, but could be related to

varying battery voltage levels of the tags or other similar issues.

Page 11 of 15

5. Data acquisition
The host computer is receiving and parsing packets via simple python script. The script is using

BLE GATT protocol to collect the data from each individual tag to a single system. The script was

only tested on Windows platform but should work on Linux or macOS also. Script repeatedly asks

tags. Here is an example of the script output data in format “receiver => sender/count/RSSI”, where

received is the receiver tag of the broadcast signal, sender is first byte of sender tags MAC, count is

count of measurements done and RSSI being the signal level value in hex, negated in dBm.

c2:b6:ed:fd:75:88 => c9/007c/1d e6/006c/23 f2/0082/21 f8/006b/0f fb/0045/1a df/000a/10 e7/0046/0e

c9:0c:d4:28:6f:32 => f8/0039/1b fb/0056/0f c2/006e/1f df/00ad/21 e6/0061/12 e7/0036/22 f2/0022/20

df:8f:d1:70:f5:8b => c9/007e/20 e6/0025/1f e7/0068/0f f2/0089/1c f8/0082/10 fb/004f/1c c2/004f/11

e6:e0:fa:e2:0f:b9 => e7/0078/28 fb/0065/0f c2/0096/22 df/0058/1e f2/003c/0e f8/0057/20 c9/0020/11

e7:bc:aa:46:fd:19 => c9/0062/21 e6/0087/29 f2/0052/24 f8/0032/0f c2/001a/0e df/004d/0f fb/003f/28

f2:d8:b7:af:70:e1 => c2/0049/23 df/0080/1c e6/007f/0e e7/0017/25 f8/0003/18 fb/0036/13 c9/0043/1f

f8:7e:71:a8:43:4e => c2/0032/10 df/005f/10 e6/0086/20 f2/0019/17 fb/0035/1c c9/0057/1a e7/001f/0f

fb:ef:a9:53:4b:43 => e6/0022/0f f2/0037/10 e7/002c/26 f8/002e/1b c9/0032/0e df/0011/1c c2/0014/1a

5.1. Converting signal level data into meter distance data
Signal levels are converted using following formula:

r =  10(b + s) / (10 × c)

Where r is the distance in meters, b is base signal level at a distance of 1 meter, s is the received

signal strength and c is calibration constant.

We measured b to be around -69 dBm and guessed c to be around 3.77.

https://gist.github.com/dexter3k/1b3b1ec250d810c9535cdca410dea101

Page 12 of 15

6. Constructing node space
At this stage we have a network of interconnected nodes with known distances to each other.

The distances might not completely represent reality, but they have an important property that real

distances, due to the fact that signal might be obstructed, but not amplified, are never greater than

the observed ones.

We begin by randomly distributing nodes on a 2D plane. Then we apply gradient descent-based

algorithm to minimize the difference of distances on the network and the 2D plane. As a result, with

high probability most of the nodes will organize themselves into a shape, that closely resembles the

spatial arrangement of the actual real-world nodes. The only problem is that this shape forms its

own basis, and so the user interaction is needed to correctly apply linear transformations to the

system.

Implementation in Golang can be found here. Example input datafile here.

Figure 3 Example coordinate set output from algorithm

https://gist.github.com/dexter3k/4f1134c572fdc3bc4e532767a8b6121d
https://gist.github.com/dexter3k/fe7d1d9dbf99307e62cfcfd6220f6d1a

Page 13 of 15

7. User interface for fine tuning (not implemented)
Unfortunately, we were unable to complete this part of the project, but here the description of

the final project as we see it.

We need user interface that allows for fine tuning of the data. First of all basic linear

transformations have to be applied, such as mirroring, skewing, scaling and shifting of the acquired

shape to match the floor plan. Such operations are merely required to construct a transformation

matrix from node-space to floorplan-space.

When nodes are aligned properly on the floor plan user can begin adjusting nodes that are

placed incorrectly or anchoring correctly placed nodes to a fixed position. Every change or update

of data on the nodes causes another run of the algorithm as described above, but instead of starting

with random node locations, we start with last output and add new user-added constraints to the

data. This will adjust position of non-anchored nodes in real time. The accuracy of the resulting data

is improved significantly with every iteration of this process.

Page 14 of 15

8. Reflection on the project

8.1. Overall project success
The goals for the project were to create a system, which can be used to determine locations

of lamps in a large set of luminaires. Since using floorplan to make small adjustments in a set of

received coordinates was a viable option, we have decided to invest more time in obtaining

more accurate shape and relative distances for the set RuuviTags, rather than calculating exact

coordinates of them. This reduced our workload by a large margin by removing the need for

accurate calibration of the Bluetooth modules. With our chosen method we were able to obtain

more or less accurate representation of real-world layout of RuuviTags. Gathered data is easily

recognizable by human and when used alongside a floorplan drastically decreases the workload

of setting up a lighting system.

Initially we planned to develop complete single-application solution, but failed due to time

constraints and lack of expertise with graphical applications. Instead, we have two pieces of

software in Python and Golang for data gathering and processing respectively with graphical

representation produced in any available plotting software.

8.2. Improvements
Due to time constraints, we decided not to do develop a prototype with better RSSI signal

propagation. Both us and sponsoring company agreed, that using a lower frequency carrier

signal e.g., 900 MHz, is more suitable for this task, since it is affected by distance and obstacles

to a lesser extent compared to 2.4GHz. More accurate calibration as well as measuring

luminaire casing signal dampening capacity can also yield more accurate results in a final

product.

8.3. Timetables
At the beginning of the project, we were having an optimistic picture of project complexity

and requirements, but as we started working hands-on on the project we realized, that most of

the tasks were way more difficult than we expected and were prepared for. This resulted in

many delays in the timetable, as we had to explore many new fields that were new to us. For

instance, we had basically zero prior knowledge of embedded programming. Nevertheless, our

passion for learning new stuff allowed us to complete all of the essential parts of the project,

although we had to focus only on one RSSI based solution without evaluating any other ways to

solve the task.

8.4. Risk analysis
At the beginning of the project, we determined that the only possible risk would be that no

meaningful results will be delivered at the end. We succeeded in achieving a working prototype

that is able to provide insights into applicability of our solution.

The most severe risk for the final product that we have encountered during the project was

the fact, that most readily available systems are not suited for this task and would introduce a lot

of bugs and inaccuracies into the system as well as lots of signal noise to the setup site.

Developing an in-house solution that focuses on this task is a must in our opinion.

Page 15 of 15

9. Discussion and Conclusions
The project went well, and we reached our personal goals in learning and adapting new skills. Most

importantly we have greatly increased our teamwork skills and cooperation performance.

List of Appendixes

• Source code for currently used fork of RuuviTag firmware

o https://github.com/dexter3k/ruuvi.firmware.c/tree/ensto_proto

• Source code for data collection from tags

o https://gist.github.com/dexter3k/1b3b1ec250d810c9535cdca410dea101

• Source code for data processing algorithm

o https://gist.github.com/dexter3k/4f1134c572fdc3bc4e532767a8b6121d

References

• RuuviTag firmware repository

o https://github.com/ruuvi/ruuvi.firmware.c

• SEGGER Build instructions

o https://lab.ruuvi.com/ses/

• Gradient Descent

o https://en.wikipedia.org/wiki/Gradient_descent

https://github.com/dexter3k/ruuvi.firmware.c/tree/ensto_proto
https://gist.github.com/dexter3k/1b3b1ec250d810c9535cdca410dea101
https://gist.github.com/dexter3k/4f1134c572fdc3bc4e532767a8b6121d
https://github.com/ruuvi/ruuvi.firmware.c
https://lab.ruuvi.com/ses/
https://en.wikipedia.org/wiki/Gradient_descent

